GAMBL, genetic algorithm optimization of memory-based WSD
نویسندگان
چکیده
GAMBL is a word expert approach to WSD in which each word expert is trained using memorybased learning. Joint feature selection and algorithm parameter optimization are achieved with a genetic algorithm (GA). We use a cascaded classifier approach in which the GA optimizes local context features and the output of a separate keyword classifier (rather than also optimizing the keyword features together with the local context features). A further innovation on earlier versions of memorybased WSD is the use of grammatical relation and chunk features. This paper presents the architecture of the system briefly, and discusses its performance on the English lexical sample and all words tasks in SENSEVAL-3.
منابع مشابه
Chaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کاملClustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization
So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...
متن کاملIntroducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems
The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کامل